icana®

RF Components for Wireless Infrastructure

About iCana

iCana is a fabless semiconductor component supplier specializing in design and manufacturing of RF components for wireless communication. We focus on RF products for 5G sub-6 GHz and mmWave wireless infrastructure. By managing the end-to-end process from IC design through mass production, we are committed to providing exceptional performance, quality and reliability. Headquartered in Taiwan, we have R&D centers in Taiwan, Belgium and Singapore.

Partnership

We understand that partnership and collaboration are key to success in the fast-paced 5G era. For this reason, iCana collaborates with multiple global partners to deliver its differentiated products.

Contact us at **sales@icana-rf.com** if you would like to explore opportunities for working and creating value together.

iCana's Global Support Network

Belgium Office

iCana BV

Blijde Inkomststraat 22, 3000 Leuven, Belgium

T +32 16 79 92 60

Singapore Office

iCana Limited

The Metropolis Tower One, #02-01, 9 North Buona Vista Drive, 138588, Singapore

Taiwan Headquarters

iCana Limited

5F, No. 28-2, Baogao Road, Xindian District, New Taipei City 231, Taiwan

T +886 2 2785 1339

Wireless Infrastructure

At iCana, we are dedicated to providing cutting-edge RF components needed to create robust and efficient 5G networks. Our components offer wide bandwidth, high power efficiency and high linearity, making them ideal for use in a range of applications covering all major 5G frequency bands in the 5G NR FR1 (Sub-6 GHz) and FR2 (mmWave) frequency ranges.

5G Sub-6 GHz

Our products include all the active RF components used in small cell frontend designs including power amplifiers, differential gain amplifiers, switches, and receiver front-end modules. Reference designs that include our full sub-6 GHz RF front-end that pair with key transceiver and baseband partners designs are available.

5G mmWave

Our 5G mmWave beamforming and up/ down converter ICs are highly integrated and cost-effective. They are designed to meet the demands of complex wireless infrastructure systems.

5G Sub-6 GHz RF Front-End Solution

iCana's sub-6 GHz products portfolio is comprised of high-efficiency power amplifiers, differential gain amplifiers, switches, and receiver front-end modules.

High-efficiency power amplifiers for maximum power savings

Differential gain amplifiers to interface directly with the transceiver

Receiver front-end modules for low noise amplification of the incoming signal

SP4T switch for the DPD feedback path

5G Sub-6 GHz Products

iCana offers a wide range of 5G sub-6 GHz products for wireless infrastructure, including 28, 30, and 33 dBm high-efficiency power amplifiers, differential gain amplifiers, single and dual-channel receiver front-end module and switches.

	*Average Power	n3	n1	n40	n7/n41
• Coordination	2 W Power Amplifier				
• C comments	1 W Power Amplifier				
· C · · · · · · · · · · · · · · · · · ·	1/2 W Power Amplifier	ARQSP1819-4	ARQSP2122-4	ARQSP2324-4	ARQSP2527-4
	_				
9.0	Gain	ICASD172	21-D2S	ICASD	2328-D2S
· C · · ·	Gain Amplifier	ICASD172 ICASD172	21-D2S 21-S2D	ICASD ICASD	2328-D2S 2328-S2D
C C C C C C C C C C C C C C C C C C C	Gain Amplifier Single Channel Rx FEM	ICASD172	21-D2S 21-S2D	ICASD ICASD	2328-D2S 2328-S2D
C C C C C C C C C C C C C C C C C C C	Gain Amplifier Single Channel Rx FEM Dual	ICASD172	21-D2S 21-S2D ARQSF1	ICASD ICASD	2328-D2S 2328-S2D
Common Harris	Gain Amplifier Single Channel Rx FEM Dual Channel Rx FEM	ICASD172	21-D2S 21-S2D ARQSF1	ICASD ICASD	2328-D2S 2328-S2D
C C C C C C C C C C C C C C C C C C C	Gain Amplifier Single Channel Rx FEM Dual Channel Rx FEM	ICASD172	21-D2S 21-S2D ARQSF1	ICASD ICASD	2328-D2S
Comment Com	Gain Amplifier Single Channel Rx FEM Dual Channel Rx FEM SP4T Switch	ICASD172	21-D2S 21-S2D ARQSF1	ICASD ICASD	2328-D2S

Power Amplifiers 5G Sub-6 GHz

Average output powers of 28, 30, and 33 dBm

Targeted for indoor and outdoor small-cells from 24 dBm (0.25 W) to 30 dBm (1 W) at the antenna port

- Extremely rugged Withstands output VSWR mismatch of up to 10:1 for safe continuous operation
- High linearity and efficiency Excellent ACLR of -50 dBc with commercially available DPD platforms
- Pin-to-pin compatibility
 Pin-to-pin compatibility between 28 dBm and 30 dBm PA families

1/2 W High-Efficiency Power Amplifiers

- 28 dBm (0.6 W) average output power at 8.5 dB PAR
- Ultra rugged: can withstand 10:1 VSWR
- -50 dBc ACLR with DPD (28 dBm, 8.5 dB PAR)
- Excellent PAE with wide IBW
- 5V operation (GaAs)
- + 5×5 mm² pin-to-pin compatible package for 1/2 W and 1 W PA families
- 50 Ω in/out

Part Number	Frequency	Band	Gain (dB)	Psat (dBm)	PAE (%)	iBW (MHz)
ARQSP1819-4	1.8-1.9 GHz	n3, n39	39.5	36	30	60
ARQSP2122-4	2.1-2.2 GHz	n1	38	36.2	32	60
ARQSP2324-4	2.3-2.4 GHz	n30, n40	40	35.4	31	100
ARQSP2527-4	2.5-2.7 GHz	n7, n38, n41	36.5	36	30	100
ARQSP3336-4	3.3-3.6 GHz	n77, n78	38.1	35.2	21.2	100
ARQSP3437-4	3.4-3.7 GHz	n48 (CBRS), n77, n78	37.6	35.4	23.9	100
ARQSP3740-4	3.7-4.0 GHz	n77	37	35.5	20	100
ARQSP4450-4	4.4-5.0 GHz	n79	32.7	34.6	22.8	100

1 W High-Efficiency Power Amplifiers

- 30 dBm (1 W) average output power at 9.5 dB PAR
- Ultra rugged: can withstand 10:1 VSWR
- -50 dBc ACLR with DPD (30 dBm, 9.5 dB PAR)
- Wide bandwidth: 400 MHz IBW
- High efficiency: > 25% PAE
- 5V + 12 V operation (GaAs)
- $5 \times 5 \text{ mm}^2$ package pin-to-pin compatible between iCana 1/2 W and 1 W PA families
- 50 Ω in/out

Part Number	Frequency	Band	Gain (dB)	Psat (dBm)	PAE (%)	iBW (MHz)
ICASP3338-8*	3.3-3.8 GHz	n48 (CBRS), n77, n78	36	39	25	400
ICASP3542-8*	3.45-4.2 GHz	n77, n78	36	39	25	400
ICASP4450-8*	4.4-5.0 GHz	n79	36	39	24	400

*Coming soon

2 W High-Efficiency Power Amplifiers

- 33 dBm (2 W) average output power at 9.5 dB PAR
- Ultra rugged: can withstand 10:1 VSWR
- -50 dBc ACLR with DPD (33 dBm, 9.5 dB PAR)
- Wide bandwidth: 400 MHz IBW
- High efficiency: > 40% PAE
- 28 V operation (GaN)
- 6×10 mm² package pin-to-pin compatible family
- 50 Ω in/out

Part Number	Frequency	Band	Gain (dB)	Psat (dBm)	PAE (%)	iBW (MHz)
ICASP3338-20	3.3-3.8 GHz	n48 (CBRS), n77, n78	28	45	30	100
ICASP3338-20A*	3.3-3.8 GHz	n48 (CBRS), n77, n78	30	43	40-45	400
ICASP3542-20A*	3.45-4.2 GHz	n77, n78	30	43	40-45	400
ICASP4450-20A*	4.4-5.0 GHz	n79	30	43	40-45	400

*Coming soon

Gain Amplifiers 5G Sub-6 GHz

- Differential to single-ended (D2S) and Single-ended to differential (S2D)
 - Integrated balun design reduces component count, PCB size, and BOM cost
 Differencial interface compatible with
 - common transceivers
- Small footprint 2x2 mm² pin-to-pin compatible family

D2S / S2D Gain Amplifiers

- Transmit chain (D2S): 100 Ω in / 50 Ω out
- Receive chain (S2D): 100 Ω in / 50 Ω out
- Integrated balun reduces BOM complexity and PCB footprint
 No external choke inductor needed
- 5 V operation (GaAs)
- 2x2 mm² pin-to-pin compatible family

	er.	_		
1 10	16) 1		
			18	
		_		

Part Number	Configuration	Frequency	Band	Gain (dB)	OP1dB (dBm)	OIP3 (dBm)	NF (dB)
ICASD1721-D2S	D2S	1.7-2.1 GHz	n1, n2, n3, n25, n39	18.5	19	30	2.4
ICASD2328-D2S	D2S	2.3-2.8 GHz	n7, n30, n38, n40, n41	18.3	19	32.4	2.6
ICASD3338-D2S	D2S	3.3-3.8 GHz	n48 (CBRS), n77, n78	17.5	18	34	2.7
ICASD4450-D2S	D2S	4.4-5.0 GHz	n79	16.5	17	33	3.6
ICASD1721-S2D	S2D	1.7-2.1 GHz	n1, n2, n3, n25, n39	19	17.5	30	1.5
ICASD2328-S2D	S2D	2.3-2.8 GHz	n7, n30, n38, n40, n41	19	17.5	33	1.6
ICASD3338-S2D	S2D	3.3-3.8 GHz	n48 (CBRS), n77, n78	18.8	17	33	1.8
ICASD4450-S2D	S2D	4.4-5.0 GHz	n79	18	15.8	27	2.0

Receiver Front-End Module 5G Sub-6 GHz

- Single and dual channel FEMs
 Intergrated bypass switch for optimized gain
 Single channel for optimized isolation and
 simplified routing
 Dual channel for reduced board size and BOM cost
- **High channel isolation in dual design** 40 dB channel isolation in a small footprint
- High power handling
 41 dBm average input power handling for small cells and mMIMO
- Fully matched 50 Ω input and output Pin-to-pin compatible product families

Single and Dual Channel Receiver Front-End Modules

- Includes a silicon SPDT switch and a two-stage GaAs LNA with bypass
- High Gain (HG) and Low Gain (LG) modes
- 5 V operation with 1.8/3.3 V control
- Single: 5×3 mm² package
- Dual: 6×6 mm² package
- Pin-to-pin compatible families
- 50 Ω in/out

Part Number	umber Configuration Free	Fraguena		Gain (dB)		OIP3 (dBm)		NF (dB)	
Fart Number	Configuration	Frequency		HG	LG	HG	LG	HG	LG
ARQSF2442-RX-B	Single	2.4-4.2 GHz	n41, n48 (CBRS), n77, n78	36.1	15.6	29.4	22.5	1.6	1.5
ARQSF3753-RX-B	Single	3.7-5.3 GHz	n77, n79	36.4	15.1	28.7	23	1.6	1.6
ARQSF1828-RX-A	Dual	1.8-2.8 GHz	n1, n2, n3, n7, n41	38	18	33	27	1.5	1.4
ARQSF2442-RX-A	Dual	2.4-4.2 GHz	n41, n48 (CBRS), n77, n78	37	16.5	34	25	1.4	1.3
ARQSF3753-RX-A	Dual	3.7-5.3 GHz	n77, n79	37	16	29.5	28.5	1.6	1.6

Switch 5G Sub-6 GHz

- Major 3GPP band coverage Covers all Sub-6 GHz bands from 1 to 5 GHz
- High performance
 - Low insertion loss, excellent isolation, and fast switching
 - Handles signal power levels up to 33 dBm
- Supports up to 4T4R SP4T is ideal for transceiver Observation Receiver (ORx) operation for DPD linearization
- Fully matched 50 Ω input and output

SP4T Switch

- Absorptive SP4T switch for DPD transceiver Observation Receiver (ORx) path
- High performance
 - Low insertion loss of 0.7 dB $\,$
 - Excellent isolation of 40 dB
 - Low DC current of 140 μA
- Fast switching time
- 4x4 mm² package
- 50 Ω in/out

Part Number	Frequency	Insertion Loss (dB)	Return Loss (dB)	Isolation (dB)
ICASS1050-4T	1-5 GHz	0.7	20	40

icana®

5G mmWave RF Front-End Solution

iCana's portfolio of mmWave products includes beamforming ICs and up/ down converters.

Dual-Channel Up/Down Converter Supports horizontal and vertical polarization Drives up to 16 BFICs without external amplification

8 Channel Beamforming IC4 paths x 2 polaritiesTo steer the antenna array in bothhorizontal and vertical polarization

5G mmWave Products

iCana's 5G mmWave product lineup includes beamforming ICs and up/down converters that cover all key 5G mmWave frequency bands.

Beamforming IC 5G mmWave

iCana's beamforming ICs are highly-integrated and cost-effective. These ICs offer industry-leading performance across 8 channels with independent control for each channel in both transmit and receive paths. The IC includes high tunability and reconfigurability, allowing for optimal configuration of the antenna phased array. On-chip calibration circuitry enables consistent performance across various operating conditions, using built-in digital control circuitry, large on-chip memory, and sensor interface that monitors temperature, RF power, and power consumption.

- 8 single-polarization or 4 dual-polarization configurations
- Designed in CMOS for cost effectiveness
- Best-in-class phase and gain accuracy
 - 6-bit phase resolution (5.6°phase step)
 - Common gain range of 20 dB with 1 dB step
 - Channel gain range of 7 dB with 0.5 dB step

- Large 2048 memory for shared Tx and Rx fast beam switching
- Automatic temperature compensation
- Low Noise Figure < 4.2 dB
- Low Rx power consumption: 70mW per channel

Part Number	Frequency	Band	Gain (dB)	Pavg (dBm)	OP1dB (dBm)
ICAMB2429-A	26.5-29.5 GHz	n257, n261	27	10	15.5
ICAMB2430-A	24.25-29.5 GHz	n257, n258, n261	27	13	20
ICAMB3743-A*	37.0-43.5 GHz	n259, n260	27	12	19

* Coming soon

Up/Down Converter 5G mmWave

iCana's up/down converters are highly-integrated frequency-conversion ICs that enable a low-cost, high-performance 5G phased-array when combined with iCana beamforming ICs.

Δ

в

С

D

E F

G

- Designed in CMOS for cost effectiveness
- Dual channel supports both vertical and horizontal polarizations
 - RF frequency range: 24-30 GHz
 - IF frequency range: 3-7 GHz
- High image rejection of -45 dBc to reduce signal interference
- High sideband rejection of -45 dBc
- Can drive up to 16 BFICs with no additional BOM
 - External PA path to increase the number of BFICs that can be driven
- High up/down conversion gain of 30 dB
- I/Q imbalance optimization

Part Number	Frequency	Band	Gain (dB)	Pavg (dBm)	NF (dB)
ICAMU2430-A	24-30 GHz	n257, n258, n261	30	7	12
ICAMU3743-A*	37.0-43.5 GHz	n259, n260	30	7	12

* Coming soon

icana

Sales Partners

Digi-Key Worldwide

701 Brooks Avenue South, Thief River Falls, MN 56701, USA

- **T** +1 218 681 6674
- E sales@digikey.com
- W digikey.com

Concord Advanced Technology Co., Ltd Taiwan

16F, No. 189, Jingmao 2nd Rd., Nangang Dist., Taipei City 115, Taiwan

- **T** +886 2 8226 6678
- E service@concord-at.com
- W concord-at.com

JS Commtech South Korea

RM#404, V-Charmant Bldg., #28, Hyoryeong-ro 55 gil, Seocho-gu, Seoul 06654, Korea

- **T** +82 2 574 6100
- **E** sales@jscommtech.com
- W jscommtech.com

Spec Innovations LLP

No. 558, 8th Main, 4th Block, Koramangala, Bengaluru 560034, India

T +91 080 2553 3495

- **E** sales@specinnovations.in
- W specinnovations.in

Wegoes South Korea

516, Bando IVY Valley, 686, Chenoggyesanro, Sjueong-gu, Seongnam-si, Gyeonggi-do, 13105, Korea

- **T** +82 31 749 0118
- E contact@wegoes.co.kr
- W wegoes.co.kr

- E m.carraro@celte.com
- W celte.com

Celte S.p.a.

Italy

Via Gobetti, 2/A 20063 Cernusco sul

Shinjuku Royal bldg. 805, 7-21-1 Nishishinjuku Shinjuku-ku, Tokyo 160-0023, Japan

- **T** +81 3 6908 9363
- E hama@im-c.co.jp
- W im-c.co.jp

Semix, Ltd Israel

62 Derech HaHadassim, West Industrial, Park Kadima-Zoran, 6092000, Israel

T +972 334 0979E info@semix.co.ilW semix.co.il

Weikeng Industrial Co., Ltd Taiwan

11F, No. 308, Sec. 1, Neihu Rd., Neihu Dist., Taipei City 114, Taiwan

- **T** +886 2 2659 0202 Ext 215
- E bryankuo@weikeng.com.tw
- W weikeng.com.tw

• Visit iCana's website at icana-rf.com

- Visit iCana's LinkedIn at www.linkedin.com/company/icana-rf
- Contact us at sales@icana-rf.com to ask any question or order our products

LinkedIn

www.icana-rf.com